Chapter CSS
Introduction

DHTML(Dynamic HTML) is a combination of HTML, CSS, and JavaScript. DHTML is used to create dynamic and interactive Web sites. W3C(World wide web consortium) once said: "Dynamic HTML is a term used by some vendors to describe the combination of HTML, style sheets and scripts that allows documents to be animated."

HTML was never intended to contain tags for formatting a document. HTML was intended to define the content of a document, like:

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

When tags like , and color attributes were added to the HTML 3.2 specification, it started a nightmare for web developers. Development of large web sites, where fonts and color information were added to every single page, became a long and expensive process.

To solve this problem, the World Wide Web Consortium (W3C) created CSS. All browsers support CSS today.

· CSS stands for Cascading Style Sheets

· Styles define how to display HTML elements in browser.
Importance of CSS
CSS defines HOW HTML elements are to be displayed. Styles are normally saved in external .css files. External style sheets enable you to change the appearance and layout of all the pages in a Web site, just by editing one single file (.css file).
CSS Syntax
A CSS rule has two main parts: a selector, and one or more declarations:

h1

{

color:blue;font-size:12px;

}

here

h1(Selector

color:blue(Declaration

color(Property

blue(Value
font-size-12px(Declaration

font-size(Property

12px(Value

;(semicolon)(Separator between two Declaration.
The selector is normally the HTML element you want to style. Each declaration consists of a property and a value. The property is the style attribute you want to change. Each property has a value.
CSS Example

CSS declarations always ends with a semicolon, and declaration groups are surrounded by curly brackets:

p {color:red;text-align:center;}

To make the CSS more readable, you can put one declaration on each line, like this:

Example:-
p
{
color:red;
text-align:center;
}
The above selector works for paragraph tag <p>. Suppose you want to format your <body> tag just give body following by curly braces like:

body

{

//Here format your body tag.

}

To protect browsers that do not support <style> element, insert comment tags around (HTML Comments not CSS comments)the declarations within the style element.

<style type="text/css">

<!--

p
{
color:red;
text-align:center;
}
-->

</style>

CSS Comments

Comments are used to explain your code, and may help you when you edit the source code at a later date. Comments are ignored by browsers.A CSS comment begins with "/*", and ends with "*/", like this:

/*This is a comment*/
p
{
text-align:center;
/*This is another comment*/
color:black;
}
CSS Id and Class

In addition to setting a style for a HTML element, CSS allows you to specify your own selectors called "id" and "class".

The id Selector

The id selector is used to specify a style for a single, unique element. The id selector uses the id attribute of the HTML element, and is defined with a "#".

The style rule below will be applied to the element with id="xyz":

Example:-
HTML file

<p id=xyz>This is formatted by getting id.</p>

CSS file

#xyz
{
text-align:center;
color:red;
}

Note:- Do NOT start an ID name with a number! It will not work in Mozilla/Firefox.

The class Selector

The class selector is used to specify a style for a group of elements. Unlike the id selector, the class selector is most often used on several elements. This allows you to set a particular style for any HTML elements with the same class.

The class selector uses the HTML class attribute, and is defined with a "."(dot) symbol.
In the example below, all HTML elements with class="center" will be center-aligned:

Example
HTML file

<p class="center">Formatted Paragraph</p>

<h1 class="center">Formatted Header</h1>

<p>This is not formatted</p>

CSS file

.center {text-align:center;}
All the tags having class="center" attribute will be formatted. You can also specify that only specific HTML elements should be affected by a class.

In the example below, all p elements with class="center" will be center-aligned:

Example:-
HTML file

<p class="center" > Formatted by .center class </p>

<p class="center"> Formatted by .center class </p>

<p class="center"> Formatted by .center class</p>

<p>not formatted</p>

<p>not formatted</p>

<h1 class="center">Having class=center but not formatted only <p> is formatted</h1>
CSS file

p.center
{
text-align:center;
}
p.center becomes specific class for <p> tag that have an attribute class="center". For other tags having class="center" or a <p> tag don’t have class="center" formatting is not applicable.
Note:- Do NOT start a class name with a number.
Example:-

first.html

<html>

<head>

<title>css example</title>

<style type="text/css">

h1 {background-color:#6495ed;}

div {background-color:#b0c4de;}

p.another

{

background-color:#e0ffff;

}

</style>

</head>

<body>

<h1>This is Annother.html</h1>

<p class="another">Paragraph</p>

<h2 class="another">My Vcasfsakl</h2>

<p class="another">Another paragraph</p>

<div class="another">

This division of screen belong to div

</div>

</body>

</html>
Output:-
[image: image1.png]css example - =)

2. C\User\Saff\Desktop\ Matter\CS5\CS5 examplesanothertm! oo x [Boooge £ -
x Google <] sench - @ o | @shwer B+ v [0 S+ | P Checkn > &+ O Sgnin
e Fovortes g] Suggested Sies =] Web Sice Gallery ~

& s eample 1

Paragraph
My Vcasfsakl

Another paragraph
Thisdvsonofscreenbelongtodiv

Inserting Style Sheets

When a browser reads a style sheet, it will format the document according to it.

Three Ways to Insert CSS

There are three ways of inserting a style sheet:

· External style sheet

· Internal style sheet

· Inline style

External Style Sheet

An external style sheet is ideal when the style is applied to many pages. With an external style sheet, you can change the look of an entire Web site by changing one file. Each page must link to the style sheet using the <link> tag. The <link> tag goes inside the head section:

<head>
<link rel="stylesheet" type="text/css" href="mystyle.css" />
</head>

An external style sheet can be written in any text editor. The file should not contain any html tags. Your style sheet should be saved with a .css extension.
 An example of a style sheet file is shown below:
example.css

hr {color:blue;}
p {color:red;}

Note:- Do not leave spaces between the property value and the units.
Internal Style Sheet

An internal style sheet should be used when a single document has a unique style. You define internal styles in the head section of an HTML page, by using the <style> tag, like this:

<head>
<style type="text/css">
h1 {color:blue;}
p {color:red;}
</style>
</head>

Inline Styles

An inline style loses many of the advantages of style sheets by mixing content with presentation. To use inline styles you use the style attribute in the relevant tag. The style attribute can contain any CSS property. The example shows how to change the color and the left margin of a paragraph:

<p style="color:red;background-color:green;">This is a paragraph.</p>

Multiple Style Sheets

If some properties have been set for the same selector in different style sheets, the values will be inherited from the more specific style sheet.

For example, an external style sheet has these properties for the h1 selector:

h1
{
color:red;
}

And an internal style sheet has these properties for the h1 selector:

h1
{
background-color:green;
}

If the page with the internal style sheet also links to the external style sheet the properties for h1 will be:

color: red;
background-color:green;
The color is inherited from the external style sheet and the background-color is placed by the internal style sheet.

Multiple Styles Will Cascade into One

Styles can be specified:

· inside an HTML element

· inside the head section of an HTML page

· in an external CSS file

Tip: Even multiple external style sheets can be referenced inside a single HTML document.

Cascading order

What style will be used when there is more than one style specified for an HTML element?

Generally speaking we can say that all the styles will "cascade" into a new "virtual" style sheet by the following rules, where number four has the highest priority:

1. Browser default

2. External style sheet

3. Internal style sheet (in the head section)

4. Inline style (inside an HTML element)

So, an inline style (inside an HTML element) has the highest priority, which means that it will override a style defined inside the <head> tag, or in an external style sheet, or in a browser (a default value).

Note: If the link to the external style sheet is placed after the internal style sheet in HTML <head>, the external style sheet will override the internal style sheet.
CSS Background
CSS background properties are used to define the background effects of an element.

CSS properties used for background effects:

· background-color

· background-image

· background-repeat

· background-attachment

· background-position

Background Color

The background-color property specifies the background color of an element. The background color of a page is defined in the body selector.
Example:-
body {background-color:#b0c4de;}

The background color can be specified by:

· name - a color name, like "red"

· RGB - an RGB value, like "rgb(255,0,0)"

· Hex - a hex value, like "#ff0000"

In the example below, the h1, p, and div elements have different background colors:

Example:-
h1 {background-color:#6495ed;}
p {background-color:#e0ffff;}
div {background-color:#b0c4de;}

Background Image

The background-image property specifies an image to use as the background of an element. By default, the image is repeated so it covers the entire element.

The background image for a page can be set like this:

Example:-
body {background-image:url('xyz.jpg');}

Background Image - Repeat Horizontally or Vertically

By default, the background-image property repeats an image both horizontally and vertically.

Some images should be repeated only horizontally or vertically, or they will look strange, like this:

Example

body
{
background-image:url('xyz.jpg');
}

If the image is repeated horizontally (repeat-x), the background will look better:

Example

body
{
background-image:url('xyz.jpg');
background-repeat:repeat-x;
}
Repeat Vertically:-Use repeat-y value for attribute background-repeat.
Example

body
{
background-image:url('xyz.jpg');
background-repeat:repeat-y;
}

Background Image - Set position and no-repeat

Note:- When using a background image, use an image that does not disturb the text.

Showing the image only once is specified by the background-repeat property:

Example:-
body
{
background-image:url('xyz.jpg');
background-repeat:no-repeat;
}

In the example above, the background image is shown in the same place as the text. We want to change the position of the image, so that it does not disturb the text too much.

The position of the image is specified by the background-position property:

Example:-
body
{
background-image:url('img_tree.png');
background-repeat:no-repeat;
background-position:right top;
}

Background - Shorthand property

As you can see from the examples above, there are many properties to consider when dealing with backgrounds.

To shorten the code, it is also possible to specify all the properties in one single property. This is called a shorthand property.

The shorthand property for background is simply "background":

Example

body {background:#ffffff url('xyz.jpg') no-repeat right top;}

When using the shorthand property the order of the property values are:

· background-color

· background-image

· background-repeat

· background-attachment

· background-position

It does not matter if one of the property values are missing, as long as the ones that are present are in this order.

All CSS Background Properties

	Property
	Description
	Values

	background
	Sets all the background properties in one declaration
	background-color
background-image
background-repeat background-attachment background-position
inherit

	background-attachment
	Sets whether a background image is fixed or scrolls with the rest of the page
	scroll
fixed
inherit

	background-color
	Sets the background color of an element
	color-rgb
color-hex
color-name
transparent
inherit

	background-image
	Sets the background image for an element
	url(URL)
none
inherit

	background-position
	Sets the starting position of a background image
	left top
left center
left bottom
right top
right center
right bottom
center top
center center
center bottom
x% y%
xpos ypos
inherit

	background-repeat
	Sets if/how a background image will be repeated
	repeat
repeat-x
repeat-y
no-repeat
inherit

CSS Text Formatting

This text is styled with some of the text formatting properties. The heading uses the text-align, text-transform, and color properties. The paragraph is indented, aligned, and the space between characters is specified. The underline is removed from the "Try it yourself" link.

Text Color

The color property is used to set the color of the text. The color can be specified by:

· name - a color name, like "red"

· RGB - an RGB value, like "rgb(255,0,0)"

· Hex - a hex value, like "#ff0000"

The default color for a page is defined in the body selector.

Example:-
body {color:blue;}
h1 {color:#00ff00;}
h2 {color:rgb(255,0,0);}

Note:- For W3C compliant CSS: If you define the color property, you must also define the background-color property.

Text Alignment

The text-align property is used to set the horizontal alignment of a text. Text can be centered, or aligned to the left or right, or justified. When text-align is set to "justify", each line is stretched so that every line has equal width, and the left and right margins are straight (like in magazines and newspapers).

Example:-
h1 {text-align:center;}
p.date {text-align:right;}
p.main {text-align:justify;}

Text Decoration

The text-decoration property is used to set or remove decorations from text. The text-decoration property is mostly used to remove underlines from links for design purposes:

Example:-
a {text-decoration:none;}

It can also be used to decorate text:

Example

h1 {text-decoration:overline;}
h2 {text-decoration:line-through;}
h3 {text-decoration:underline;}
h4 {text-decoration:blink;}

It is not recommended to underline text that is not a link, as this often confuses users.
Note:- Some browsers will not support property text-decoration:blink.
Text Transformation

The text-transform property is used to specify uppercase and lowercase letters in a text. It can be used to turn everything into uppercase or lowercase letters, or capitalize the first letter of each word.

Example

p.uppercase {text-transform:uppercase;}
p.lowercase {text-transform:lowercase;}
p.capitalize {text-transform:capitalize;}

Text Indentation

The text-indentation property is used to specify the indentation of the first line of a text.

Example

p {text-indent:50px;}
All CSS Text Properties

	Property
	Description
	Values

	color
	Sets the color of a text
	color

	direction
	Sets the text direction
	ltr
rtl

	line-height
	Sets the distance between lines
	normal
number
length
%

	letter-spacing
	Increase or decrease the space between characters
	normal
length

	text-align
	Aligns the text in an element
	left
right
center
justify

	text-decoration
	Adds decoration to text
	none
underline
overline
line-through
blink

	text-indent
	Indents the first line of text in an element
	length
%

	text-shadow
	
	none
color
length

	text-transform
	Controls the letters in an element
	none
capitalize
uppercase
lowercase

	unicode-bidi
	
	normal
embed
bidi-override

	vertical-align
	Sets the vertical alignment of an element
	baseline
sub
super
top
text-top
middle
bottom
text-bottom
length
%

	white-space
	Sets how white space inside an element is handled
	normal
pre
nowrap

	word-spacing
	Increase or decrease the space between words
	normal
length

CSS Font

CSS font properties define the font family, boldness, size, and the style of a text.

Difference Between Serif and Sans-serif Fonts

 [image: image2.png]F F

Sans-serif Serif

On computer screens, sans-serif fonts are considered easier to read than serif fonts.

CSS Font Families

In CSS, there are two types of font family names:

· generic family - a group of font families with a similar look (like "Serif" or "Monospace")

· font family - a specific font family (like "Times New Roman" or "Arial")

	Generic family
	Font family
	Description

	Serif
	Times New Roman
Georgia
	Serif fonts have small lines at the ends on some characters

	Sans-serif
	Arial
Verdana
	"Sans" means without - these fonts do not have the lines at the ends of characters

	Monospace
	Courier New
Lucida Console
	All monospace characters has the same width

Font Family

The font family of a text is set with the font-family property. The font-family property should hold several font names as a "fallback" system. If the browser does not support the first font, it tries the next font. Start with the font you want, and end with a generic family, to let the browser pick a similar font in the generic family, if no other fonts are available.

Note: If the name of a font family is more than one word, it must be in quotation marks, like font-family: "Times New Roman". More than one font family is specified in a comma-separated list:

Example

p{font-family:"Times New Roman", Times, serif;}

Font Style

The font-style property is mostly used to specify italic text.

This property has three values:

· normal - The text is shown normally

· italic - The text is shown in italics

· oblique - The text is "leaning" (oblique is very similar to italic, but less supported)

Font Size

The font-size property sets the size of the text. Being able to manage the text size is important in web design. However, you should not use font size adjustments to make paragraphs look like headings, or headings look like paragraphs.

Always use the proper HTML tags, like <h1> - <h6> for headings and <p> for paragraphs.

The font-size value can be an absolute, or relative size.

Absolute size:

Sets the text to a specified size

Does not allow a user to change the text size in all browsers (bad for accessibility reasons)

Absolute size is useful when the physical size of the output is known

Relative size:

Sets the size relative to surrounding elements

Allows a user to change the text size in browsers

If you do not specify a font size, the default size for normal text, like paragraphs, is 16px (16px=1em).

Set Font Size With Pixels

Setting the text size with pixels, gives you full control over the text size:

Example:-
h1 {font-size:40px;}
h2 {font-size:30px;}
p {font-size:14px;}

The example above allows Firefox, Chrome, and Safari to resize the text, but not Internet Explorer.

The text can be resized in all browsers using the zoom tool (however, this resizes the entire page, not just the text).

Set Font Size With Em

To avoid the resizing problem with Internet Explorer, many developers use em instead of pixels. The em size unit is recommended by the W3C. 1em is equal to the current font size. The default text size in browsers is 16px. So, the default size of 1em is 16px. The size can be calculated from pixels to em using this formula: pixels/16=em

Example:-
h1 {font-size:2.5em;} /* 40px/16=2.5em */
h2 {font-size:1.875em;} /* 30px/16=1.875em */
p {font-size:0.875em;} /* 14px/16=0.875em */

In the example above, the text size in em is the same as the previous example in pixels. However, with the em size, it is possible to adjust the text size in all browsers.

Unfortunately, there is still a problem with IE. When resizing the text, it becomes larger than it should when made larger, and smaller than it should when made smaller.

Use a Combination of Percent and Em

The solution that works in all browsers, is to set a default font-size in percent for the body element:

Example:-
body {font-size:100%;}
h1 {font-size:2.5em;}
h2 {font-size:1.875em;}
p {font-size:0.875em;}

All CSS Font Properties

	Property
	Description
	Values

	font
	Sets all the font properties in one declaration
	font-style
font-variant
font-weight
font-size/line-height
font-family
caption
icon
menu
message-box
small-caption
status-bar
inherit

	font-family
	Specifies the font family for text
	family-name
generic-family
inherit

	font-size
	Specifies the font size of text
	xx-small
x-small
small
medium
large
x-large
xx-large
smaller
larger
length
%
inherit

	font-style
	Specifies the font style for text
	normal
italic
oblique
inherit

	font-variant
	Specifies whether or not a text should be displayed
 in a small-caps font
	normal
small-caps
inherit

	font-weight
	Specifies the weight of a font
	normal
bold
bolder
lighter
100
200
300
400
500
600
700
800
900
inherit

CSS Styling Links

Links can be styled in different ways. Links can be style with any CSS property (e.g. color, font-family, background-color). Special for links are that they can be styled differently depending on what state they are in.

The four links states are:

· a:link - a normal, unvisited link

· a:visited - a link the user has visited

· a:hover - a link when the user mouses over it

· a:active - a link the moment it is clicked

Example:-
a:link {color:#FF0000;} /* unvisited link */
a:visited {color:#00FF00;} /* visited link */
a:hover {color:#FF00FF;} /* mouse over link */
a:active {color:#0000FF;} /* selected link */

When setting the style for several link states, there are some order rules:

a:hover MUST come after a:link and a:visited

a:active MUST come after a:hover

Common Link Styles

Other common ways to style links:

Text Decoration

The text-decoration property is mostly used to remove underlines from links:

Example:-
a:link {text-decoration:none;}
a:visited {text-decoration:none;}
a:hover {text-decoration:underline;}
a:active {text-decoration:underline;}

Background Color

The background-color property specifies the background color for links:

Example:-
a:link {background-color:#B2FF99;}
a:visited {background-color:#FFFF85;}
a:hover {background-color:#FF704D;}
a:active {background-color:#FF704D;}

CSS Lists

The CSS list properties allow you to:

Set different list item markers for ordered lists

Set different list item markers for unordered lists

Set an image as the list item marker

List

In HTML, there are two types of lists:

· unordered lists - the list items are marked with bullets

· ordered lists - the list items are marked with numbers or letters

With CSS, lists can be styled further, and images can be used as the list item marker.

Different List Item Markers

The type of list item marker is specified with the list-style-type property:

Example:-
ul.a {list-style-type: circle;}
ul.b {list-style-type: square;}

ol.c {list-style-type: upper-roman;}
ol.d {list-style-type: lower-alpha;}

Some of the property values are for unordered lists, and some for ordered lists.

Values for Unordered Lists

	Value
	Description

	none
	No marker

	disc
	Default. The marker is a filled circle

	circle
	The marker is a circle

	square
	The marker is a square

Values for Ordered Lists

	Value
	Description

	armenian
	The marker is traditional Armenian numbering

	decimal
	The marker is a number

	decimal-leading-zero
	The marker is a number padded by initial zeros (01, 02, 03, etc.)

	georgian
	The marker is traditional Georgian numbering (an, ban, gan, etc.)

	lower-alpha
	The marker is lower-alpha (a, b, c, d, e, etc.)

	lower-greek
	The marker is lower-greek (alpha, beta, gamma, etc.)

	lower-latin
	The marker is lower-latin (a, b, c, d, e, etc.)

	lower-roman
	The marker is lower-roman (i, ii, iii, iv, v, etc.)

	upper-alpha
	The marker is upper-alpha (A, B, C, D, E, etc.)

	upper-latin
	The marker is upper-latin (A, B, C, D, E, etc.)

	upper-roman
	The marker is upper-roman (I, II, III, IV, V, etc.)

Note: No versions of Internet Explorer (including IE8) support the property values "decimal-leading-zero", "lower-greek", "lower-latin", "upper-latin", "armenian", or "georgian".

An Image as The List Item Marker

To specify an image as the list item marker, use the list-style-image property:

Example

ul
{
list-style-image: url('xyz.gif');
}

The example above does not display equally in all browsers. IE and Opera will display the image-marker a little bit higher than Firefox, Chrome, and Safari. If you want the image-marker to be placed equally in all browsers, a crossbrowser solution is explained below.

Crossbrowser Solution

The following example displays the image-marker equally in all browsers:

Example

	ul
{
list-style-type: none;
padding: 0px;
margin: 0px;
}
li
{
background-image: url(xyz.gif);
background-repeat: no-repeat;
background-position: 0px 5px;
padding-left: 14px;
}

Example explained:

For ul:

· Set the list-style-type to none to remove the list item marker

· Set both padding and margin to 0px (for cross-browser compatibility)

For li:

· Set the URL of the image, and show it only once (no-repeat)

· Position the image where you want it (left 0px and down 5px)

· Position the text in the list with padding-left

List - Shorthand property

It is also possible to specify all the list properties in one, single property. This is called a shorthand property.

The shorthand property used for lists, is the list-style property:

Example:-
ul
{
list-style: square url("sqpurple.gif");
}

When using the shorthand property, the order of the values are:

list-style-type

It does not matter if one of the values above are missing, as long as the rest are in the specified order.

All CSS List Properties

	Property
	Description
	Values

	list-style
	Sets all the properties for a list in one declaration
	list-style-type
list-style-position
list-style-image
inherit

	list-style-image
	Specifies an image as the list-item marker
	URL
none
inherit

	list-style-position
	Specifies if the list-item markers should appear inside or outside the content flow
	inside
outside
inherit

	list-style-type
	Specifies the type of list-item marker
	none
disc
circle
square
decimal
decimal-leading-zero
armenian
georgian
lower-alpha
upper-alpha
lower-greek
lower-latin
upper-latin
lower-roman
upper-roman
inherit

CSS Tables

The look of an HTML table can be greatly improved with CSS.
Table Borders

To specify table borders in CSS, use the border property. The example below specifies a black border for table, th, and td elements:

Example:-
table, th, td
{
border: 1px solid black;
}

Notice that the table in the example above has double borders. This is because both the table, th, and td elements have separate borders.

To display a single border for the table, use the border-collapse property.

Collapse Borders

The border-collapse property sets whether the table borders are collapsed into a single border or separated:

Example:-
table
{
border-collapse:collapse;
}
table,th, td
{
border: 1px solid black;
}

Table Width and Height

Width and height of a table is defined by the width and height properties.

The example below sets the width of the table to 100%, and the height of the th elements to 50px:

Example:-
table
{
width:100%;
}
th
{
height:50px;
}

Table Text Alignment

The text in a table is aligned with the text-align and vertical-align properties.

The text-align property sets the horizontal alignment, like left, right, or center:

Example:-
td
{
text-align:right;
}

The vertical-align property sets the vertical alignment, like top, bottom, or middle:

Example:-
td
{
height:50px;
vertical-align:bottom;
}

Table Padding

To control the space between the border and content in a table, use the padding property on td and th elements:

Example:-
td
{
padding:15px;
}

Table Color

The example below specifies the color of the borders, and the text and background color of th elements:

Example:-
table, td, th
{
border:1px solid green;
}
th
{
background-color:green;
color:white;
}

Example:
<html>

 <head>

 <title> new document </title>

 </head>

 <body>

 <table border=1 rules=rows frame="void" bgcolor="#33FF66" height="400" width="300">

 <caption align=right>Sample table</caption>

 <colgroup></colgroup><colgroup style="color:blue;text-decoration:underline"></colgroup>

<thead style="font-size:x-large">

<tr ><th>Product </th><th>Purpose</th></tr>

</thead>

<tbody>

<tr><td>Printer to print htd ddlkdlk</td><td>Printing</td></tr>

<tr><td>Scanner</td><td>Scan</td></tr>

<tr><td>i-Pod</td><td>Listen Music</td></tr>

</tbody>

<tfoot style="font-style: italic">

<tr><td>Product List</td><td>Description</td></tr>

</tfoot>

</table>

 </body>
</html>
Output:-
[image: image3.png]New Document - Wir lor

2] C:\Users\Staf\Desktop\Matter HTML Matte HTML Den02-07-2010\table html p -

 Favorites | New Document]

]»

Sample table

Product Purpose

Printer to print htd ddlkdlk Printing

iPod Listen Music

Product List Description i

CSS Box Model

All HTML elements can be considered as boxes. In CSS, the term "box model" is used when talking about design and layout. The CSS box model is essentially a box that wraps around HTML elements, and it consists of: margins, borders, padding, and the actual content. The box model allows us to place a border around elements and space elements in relation to other elements.

The image below illustrates the box model:

[image: image4.png]=
c
Q
=
=
o
O

Explanation of the different parts:

Margin - Clears an area around the border. The margin does not have a background color, and it is completely transparent

Border - A border that lies around the padding and content. The border is affected by the background color of the box

Padding - Clears an area around the content. The padding is affected by the background color of the box

Content - The content of the box, where text and images appear

In order to set the width and height of an element correctly in all browsers, you need to know how the box model works.

Width and Height of an Element

Important: When you specify the width and height properties of an element with CSS, you are just setting the width and height of the content area. To know the full size of the element, you must also add the padding, border and margin.

The total width of the element in the example below is 300px:

	width:250px;
padding:10px;
border:5px solid gray;
margin:10px;

250px (width)
+ 20px (left and right padding)
+ 10px (left and right border)
+ 20px (left and right margin)
= 300px

Imagine that you only had 250px of space. Let's make an element with a total width of 250px:

Example
width:220px;
padding:10px;
border:5px solid gray;
margin:0px;
The total width of an element should always be calculated like this:

Total element width = width + left padding + right padding + left border + right border + left margin + right margin

The total height of an element should always be calculated like this:

Total element height = height + top padding + bottom padding + top border + bottom border + top margin + bottom margin

Browsers Compatibility Issue

If you tested the previous example in Internet Explorer, you saw that the total width was not exactly 250px.

IE includes padding and border in the width, when the width property is set, unless a DOCTYPE is declared.

To fix this problem, just add a DOCTYPE to the code:

Example:-
	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<style type="text/css">
div.ex
{
width:220px;
padding:10px;
border:5px solid gray;
margin:0px;
}
</style>
</head>
<body>

<div class="ex">

<p> Tag is rendered</p>

</div>

</body>

</html>

CSS Border

The CSS border properties allow you to specify the style and color of an element's border.

Border Style

The border-style property specifies what kind of border to display.

None of the border properties will have ANY effect unless the border-style property is set!

border-style values:

none: Defines no border

dotted: Defines a dotted border

dashed: Defines a dashed border

solid: Defines a solid border

double: Defines two borders. The width of the two borders are the same as the border-width value

groove: Defines a 3D grooved border. The effect depends on the border-color value

ridge: Defines a 3D ridged border. The effect depends on the border-color value

inset: Defines a 3D inset border. The effect depends on the border-color value

outset: Defines a 3D outset border. The effect depends on the border-color value

Border Width

The border-width property is used to set the width of the border.

The width is set in pixels, or by using one of the three pre-defined values: thin, medium, or thick.

Note: The "border-width" property does not work if it is used alone. Use the "border-style" property to set the borders first.

Example:-
p.one
{
border-style:solid;
border-width:5px;
}
p.two
{
border-style:solid;
border-width:medium;
}

Border Color

The border-color property is used to set the color of the border. The color can be set by:

· name - specify a color name, like "red"

· RGB - specify a RGB value, like "rgb(255,0,0)"

· Hex - specify a hex value, like "#ff0000"

You can also set the border color to "transparent".

Note: The "border-color" property does not work if it is used alone. Use the "border-style" property to set the borders first.

Example:-
p.one
{
border-style:solid;
border-color:red;
}
p.two
{
border-style:solid;
border-color:#98bf21;
}

Border - Individual sides

In CSS it is possible to specify different borders for different sides:

Example:-
p
{
border-top-style:dotted;
border-right-style:solid;
border-bottom-style:dotted;
border-left-style:solid;
}

The example above can also be set with a single property:

Example:-
border-style:dotted solid;

The border-style property can have from one to four values.

border-style:dotted solid double dashed;

· top border is dotted

· right border is solid

· bottom border is double

· left border is dashed

border-style:dotted solid double;

· top border is dotted

· right and left borders are solid

· bottom border is double

border-style:dotted solid;

· top and bottom borders are dotted

· right and left borders are solid

border-style:dotted;

· all four borders are dotted

The border-style property is used in the example above. However, it also works with border-width and border-color.

Border - Shorthand property

As you can see from the examples above, there are many properties to consider when dealing with borders.

To shorten the code, it is also possible to specify all the border properties in one property. This is called a shorthand property.

The shorthand property for the border properties is "border":

Example

border:5px solid red;

When using the border property, the order of the values are:

· border-width

· border-style

· border-color

It does not matter if one of the values above are missing (although, border-style is required), as long as the rest are in the specified order.
All CSS Border Properties

	Property
	Description
	Values

	border
	Sets all the border properties in one declaration
	border-width
border-style
border-color

	border-bottom
	Sets all the bottom border properties in one declaration
	border-bottom-width
border-bottom-style
border-bottom-color

	border-bottom-color
	Sets the color of the bottom border
	border-color

	border-bottom-style
	Sets the style of the bottom border
	border-style

	border-bottom-width
	Sets the width of the bottom border
	border-width

	border-color
	Sets the color of the four borders
	color_name
hex_number
rgb_number
transparent
inherit

	border-left
	Sets all the left border properties in one declaration
	border-left-width
border-left-style
border-left-color

	border-left-color
	Sets the color of the left border
	border-color

	border-left-style
	Sets the style of the left border
	border-style

	border-left-width
	Sets the width of the left border
	border-width

	border-right
	Sets all the right border properties in one declaration
	border-right-width
border-right-style
border-right-color

	border-right-color
	Sets the color of the right border
	border-color

	border-right-style
	Sets the style of the right border
	border-style

	border-right-width
	Sets the width of the right border
	border-width

	border-style
	Sets the style of the four borders
	none
hidden
dotted
dashed
solid
double
groove
ridge
inset
outset
inherit

	border-top
	Sets all the top border properties in one declaration
	border-top-width
border-top-style
border-top-color

	border-top-color
	Sets the color of the top border
	border-color

	border-top-style
	Sets the style of the top border
	border-style

	border-top-width
	Sets the width of the top border
	border-width

	border-width
	Sets the width of the four borders
	thin
medium
thick
length
inherit

CSS Outlines

An outline is a line that is drawn around elements, outside the border edge, to make the element "stand out".

The outline properties specifies the style, color, and width of an outline.

All CSS Outline Properties
	Property
	Description
	Values

	outline
	Sets all the outline properties in one declaration
	outline-color
outline-style
outline-width
inherit

	outline-color
	Sets the color of an outline
	color_name
hex_number
rgb_number
invert
inherit

	outline-style
	Sets the style of an outline
	none
dotted
dashed
solid
double
groove
ridge
inset
outset
inherit

	outline-width
	Sets the width of an outline
	thin
medium
thick
length
inherit

CSS Margin

The CSS margin properties define the space around elements. The margin clears an area around an element (outside the border). The margin does not have a background color, and is completely transparent.

The top, right, bottom, and left margin can be changed independently using separate properties. A shorthand margin property can also be used, to change all margins at once.

Possible Values

	Value
	Description

	auto
	The browser sets the margin.
The result of this is dependant of the browser

	length
	Defines a fixed margin (in pixels, pt, em, etc.)

	%
	Defines a margin in % of the containing element

It is possible to use negative values, to overlap content.

Margin - Individual sides

In CSS, it is possible to specify different margins for different sides:

Example

margin-top:100px;
margin-bottom:100px;
margin-right:50px;
margin-left:50px;

Margin - Shorthand property

To shorten the code, it is possible to specify all the margin properties in one property. This is called a shorthand property. The shorthand property for all the margin properties is "margin":

Example

margin:100px 50px;

The margin property can have from one to four values.

margin:25px 50px 75px 100px;

· top margin is 25px

· right margin is 50px

· bottom margin is 75px

· left margin is 100px

margin:25px 50px 75px;

· top margin is 25px

· right and left margins are 50px

· bottom margin is 75px

margin:25px 50px;

· top and bottom margins are 25px

· right and left margins are 50px

margin:25px;

· all four margins are 25px

All CSS Margin Properties

	Property
	Description
	Values

	margin
	A shorthand property for setting the margin properties in one declaration
	margin-top
margin-right
margin-bottom
margin-left

	margin-bottom
	Sets the bottom margin of an element
	auto
length
%

	margin-left
	Sets the left margin of an element
	auto
length
%

	margin-right
	Sets the right margin of an element
	auto
length
%

	margin-top
	Sets the top margin of an element
	auto
length
%

CSS Padding

The CSS padding properties define the space between the element border and the element content. The padding clears an area around the content (inside the border) of an element. The padding is affected by the background color of the element.

The top, right, bottom, and left padding can be changed independently using separate properties. A shorthand padding property can also be used, to change all padding at once.

Possible Values

	Value
	Description

	length
	Defines a fixed padding (in pixels, pt, em, etc.)

	%
	Defines a padding in % of the containing element

Padding - Individual sides

In CSS, it is possible to specify different padding for different sides:

Example:-
padding-top:25px;
padding-bottom:25px;
padding-right:50px;
padding-left:50px;

Padding - Shorthand property

To shorten the code, it is possible to specify all the padding properties in one property. This is called a shorthand property. The shorthand property for all the padding properties is "padding":

Example:-
padding:25px 50px;

The padding property can have from one to four values.

padding:25px 50px 75px 100px;

· top padding is 25px

· right padding is 50px

· bottom padding is 75px

· left padding is 100px

padding:25px 50px 75px;

· top padding is 25px

· right and left padding are 50px

· bottom padding is 75px

padding:25px 50px;

· top and bottom padding are 25px

· right and left padding are 50px

padding:25px;

· all four padding are 25px
All CSS Padding Properties

	Property
	Description
	Values

	padding
	A shorthand property for setting all the padding properties in one declaration
	padding-top
padding-right
padding-bottom
padding-left

	padding-bottom
	Sets the bottom padding of an element
	length
%

	padding-left
	Sets the left padding of an element
	length
%

	padding-right
	Sets the right padding of an element
	length
%

	padding-top
	Sets the top padding of an element
	length
%

CSS Grouping and Nesting Selectors

Grouping Selectors

In style sheets there are often elements with the same style.

h1
{
color:green;
}
h2
{
color:green;
}
p
{
color:green;
}

To minimize the code, you can group selectors.

Separate each selector with a comma.

In the example below we have grouped the selectors from the code above:

Example

h1,h2,p
{
color:green;
}
Nesting Selectors

It is possible to apply a style for a selector within a selector. In the example below, one style is specified for all p elements, and a separate style is specified for p elements nested within the "marked" class:

Example:-
	p
{
color:blue;
text-align:center;
}
.marked
{
background-color:blue;
}
.marked p
{
color:white;
}

All CSS Dimension Properties

	Property
	Description
	Values

	height
	Sets the height of an element
	auto
length
%
inherit

	max-height
	Sets the maximum height of an element
	none
length
%
inherit

	max-width
	Sets the maximum width of an element
	none
length
%
inherit

	min-height
	Sets the minimum height of an element
	length
%
inherit

	min-width
	Sets the minimum width of an element
	length
%
inherit

	width
	Sets the width of an element
	auto
length
%
inherit

CSS Display and Visibility

The display property specifies if/how an element is displayed, and the visibility property specifies if an element should be visible or hidden.

Hiding an Element - display:none or visibility:hidden

Hiding an element can be done by setting the display property to "none" or the visibility property to "hidden". However, notice that these two methods produce different results:

visibility:hidden hides an element, but it will still take up the same space as before. The element will be hidden, but still affect the layout.

Example

h1.hidden {visibility:hidden;}

display:none hides an element, and it will not take up any space. The element will be hidden, and the page will be displayed as the element is not there:

Example

h1.hidden {display:none;}

CSS Display - Block and Inline Elements

A block element is an element that takes up the full width available, and has a line break before and after it.

Examples of block elements:

<h1>

<p>

<div>

An inline element only takes up as much width as necessary, and does not force line breaks.

Examples of inline elements:

<a>

Changing How an Element is Displayed

Changing an inline element to a block element, or vice versa, can be useful for making the page look a specific way, and still follow web standards.

The following example displays list items as inline elements:

Example:-
li {display:inline;}

The following example displays span elements as block elements:

Example:-
span {display:block;}

Note: Changing the display type of an element changes only how the element is displayed, NOT what kind of element it is. For example: An inline element set to display:block is not allowed to have a block element nested inside of it.

CSS Positioning

Through positioning we can decide which element to display in front or which element will be overlapped. The CSS positioning properties allow you to position an element. It can also place an element behind another, and specify what should happen when an element's content is too big.

Elements can be positioned using the top, bottom, left, and right properties. However, these properties will not work unless the position property is set first. They also work differently depending on the positioning method.

There are four different positioning methods.

Static Positioning

HTML elements are positioned static by default. A static positioned element is always positioned according to the normal flow of the page. Static positioned elements are not affected by the top, bottom, left, and right properties.

Fixed Positioning

An element with fixed position is positioned relative to the browser window. It will not move even if the window is scrolled:

Example:-
p.pfixed
{
position:fixed;
top:30px;
right:5px;
}

Note: Internet Explorer supports the fixed value only if a !DOCTYPE is specified.

Fixed positioned elements are removed from the normal flow. The document and other elements behave like the fixed positioned element does not exist. Fixed positioned elements can overlap other elements.

Relative Positioning

A relative positioned element is positioned relative to its normal position.

Example:-
h2.pos_left
{
position:relative;
left:-20px;
}
h2.pos_right
{
position:relative;
left:20px;
}

The content of a relatively positioned elements can be moved and overlap other elements, but the reserved space for the element is still preserved in the normal flow.

Example:-
h2.pos_top
{
position:relative;
top:-50px;
}

Relatively positioned element are often used as container blocks for absolutely positioned elements.

Absolute Positioning

An absolute position element is positioned relative to the first parent element that has a position other than static. If no such element is found, the containing block is <html>:

Example:-
h2
{
position:absolute;
left:100px;
top:150px;
}

Absolutely positioned elements are removed from the normal flow. The document and other elements behave like the absolutely positioned element does not exist. Absolutely positioned elements can overlap other elements.

Overlapping Elements

When elements are positioned outside the normal flow, they can overlap other elements.

The z-index property specifies the stack order of an element (which element should be placed in front of, or behind, the others).

An element can have a positive or negative stack order:

Example:-
img
{
position:absolute;
left:0px;
top:0px;
z-index:-1
}

An element with greater stack order is always in front of an element with a lower stack order.
All CSS Positioning Properties

	Property
	Description
	Values

	bottom
	Sets the bottom margin edge for a positioned box
	auto
length
%
inherit

	clip
	Clips an absolutely positioned element
	shape
auto
inherit

	cursor
	Specifies the type of cursor to be displayed
	url
auto
crosshair
default
pointer
move
e-resize
ne-resize
nw-resize
n-resize
se-resize
sw-resize
s-resize
w-resize
text
wait
help

	left
	Sets the left margin edge for a positioned box
	auto
length
%
inherit

	overflow
	Specifies what happens if content overflows an element's box
	auto
hidden
scroll
visible
inherit

	position
	Specifies the type of positioning for an element
	absolute
fixed
relative
static
inherit

	right
	Sets the right margin edge for a positioned box
	auto
length
%
inherit

	top
	Sets the top margin edge for a positioned box
	auto
length
%
inherit

	z-index
	Sets the stack order of an element
	number
auto
inherit

Example:-
index.html

<html>

<head>

<title>Insert title here</title>

</head>

<body bgcolor=#FAFDFD>

 <div style="position:absolute;background-color:green;color:white; left:300;top:300; width:120; height:120;z-index:0">

<p> I am at First Position.</p>

 </div>

 <div style="position:absolute;background-color:red;color:yellow;left:420;top:420;width:120;height:120;z-index:1">

 <p>I am at Second Position</p>

 </div>

 <div style="position:absolute;background-color:yellow;color:red;left:540;top:540;width:120;height:120;z-index:2">

 <p>I am at Third Position</p>

 </div>

</body>

</html>
Output:-
[image: image5.png]Insert title here - Wind

2] C:\Users\Staff\Desktop\Matter\CSS\CSS examplesiinded htmi

Explorer

[49| x 49 Google:

&

P~

4 Favorites

[@mentiiehee

CSS Float

With CSS float, an element can be pushed to the left or right, allowing other elements to wrap around it.

Float is very often used for images, but it is also useful when working with layouts.

How Elements Float

Elements are floated horizontally, this means that an element can only be floated left or right, not up or down.

· A floated element will move as far to the left or right as it can. Usually this means all the way to the left or right of the containing element.

· The elements after the floating element will flow around it.

· The elements before the floating element will not be affected.

· If an image is floated to the right, a following text flows around it, to the left:

Example:-
img
{
float:right;
}

Floating Elements Next to Each Other

If you place several floating elements after each other, they will float next to each other if there is room.

Here we have made an image gallery using the float property:

Example

.thumbnail
{
float:left;
width:110px;
height:90px;
margin:5px;
}

Turning off Float - Using Clear

Elements after the floating element will flow around it. To avoid this, use the clear property.

The clear property specifies which sides of an element other floating elements are not allowed.

Add a text line into the image gallery, using the clear property:

Example

.text_line
{
clear:both;
}

All CSS Float Properties

	Property
	Description
	Values

	clear
	Specifies which sides of an element where other floating elements are not allowed
	left
right
both
none
inherit

	float
	Specifies whether or not a box should float
	left
right
none
inherit

CSS Horizontal Align

In CSS, several properties are used to align elements horizontally.

Aligning Block Elements

A block element is an element that takes up the full width available, and has a line break before and after it.

Examples of block elements:

<h1>

<p>

<div>

Center Aligning Using the margin Property

Block elements can be aligned by setting the left and right margins to "auto".

Note: Using margin:auto will not work in Internet Explorer, unless a !DOCTYPE is declared.
Setting the left and right margins to auto specifies that they should split the available margin equally. The result is a centered element:

Example

.center
{
margin-left:auto;
margin-right:auto;
width:70%;
background-color:#b0e0e6;
}

Tip: Aligning has no effect if the width is 100%.

Left and Right Aligning Using the position Property

One method of aligning elements is to use absolute positioning:

Example

.right
{
position:absolute;
right:0px;
width:300px;
background-color:#b0e0e6;
}

Note: Absolute positioned elements are removed from the normal flow, and can overlap elements.

Crossbrowser Compatibility Issues

When aligning elements like this, it is always a good idea to predefine margin and padding for the <body> element. This is to avoid visual differences in different browsers.

There is also another problem with IE when using the position property. If a container element (in our case <div class="container">) has a specified width, and the !DOCTYPE declaration is missing, IE will add a 17px margin on the right side. This seems to be space reserved for a scrollbar. Always set the !DOCTYPE declaration when using the position property:

Example

	body
{
margin:0;
padding:0;
}
.container
{
position:relative;
width:100%;
}
.right
{
position:absolute;
right:0px;
width:300px;
background-color:#b0e0e6;
}

Left and Right Aligning Using the float Property

One method of aligning elements is to use the float property:

Example

.right
{
float:right;
width:300px;
background-color:#b0e0e6;
}

Crossbrowser Compatibility Issues

When aligning elements like this, it is always a good idea to predefine margin and padding for the <body> element. This is to avoid visual differences in different browsers.

There is also another problem with IE when using the float property. If the !DOCTYPE declaration is missing, IE will add a 17px margin on the right side. This seems to be space reserved for a scrollbar. Always set the !DOCTYPE declaration when using the float property:

Example

body
{
margin:0;
padding:0;
}
.right
{
float:right;
width:300px;
background-color:#b0e0e6;
}

CSS Pseudo-classes
CSS pseudo-classes are used to add special effects to some selectors.

Syntax

The syntax of pseudo-classes:
selector:pseudo-class {property:value;}

CSS classes can also be used with pseudo-classes:
selector.class:pseudo-class {property:value;}

Anchor Pseudo-classes

Links can be displayed in different ways in a CSS-supporting browser:

Example

a:link {color:#FF0000;} /* unvisited link */
a:visited {color:#00FF00;} /* visited link */
a:hover {color:#FF00FF;} /* mouse over link */
a:active {color:#0000FF;} /* selected link */

Note: Pseudo-class names are not case-sensitive.

Pseudo-classes and CSS Classes

Pseudo-classes can be combined with CSS classes:
a.red:visited {color:#FF0000;}

CSS Syntax

If the link in the example above has been visited, it will be displayed in red.

CSS - The :first-child Pseudo-class

The :first-child pseudo-class matches a specified element that is the first child of another element.

Note: For :first-child to work in IE a <!DOCTYPE> must be declared.

Match the first <p> element

In the following example, the selector matches any <p> element that is the first child of any element:

Example

	<html>
<head>
<style type="text/css">
p:first-child
{
color:blue;
}
</style>
</head>

<body>
<p>I am a strong man.</p>
<p>I am a strong man.</p>
</body>
</html>

Match the first <i> element in all <p> elements

In the following example, the selector matches the first <i> element in all <p> elements:

Example

	<html>
<head>
<style type="text/css">
p > i:first-child
{
font-weight:bold;
}
</style>
</head>

<body>
<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>
<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>
</body>
</html>

Match all <i> elements in all first child <p> elements

In the following example, the selector matches all <i> elements in <p> elements that are the first child of another element:

Example

	<html>
<head>
<style type="text/css">
p:first-child i
{
color:blue;
}
</style>
</head>

<body>
<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>
<p>I am a <i>strong</i> man. I am a <i>strong</i> man.</p>
</body>
</html>

CSS - The :lang Pseudo-class

The :lang pseudo-class allows you to define special rules for different languages.

Note: Internet Explorer 8 (and higher) supports the :lang pseudo-class if a <!DOCTYPE> is specified.

In the example below, the :lang class defines the quotation marks for q elements with lang="no":

Example

	<html>
<head>
<style type="text/css">
q:lang(no) {quotes: "~" "~";}
</style>
</head>

<body>
<p>Some text <q lang="no">A quote in a paragraph</q> Some text.</p>
</body>
</html>

Add different styles to hyperlinks
This example demonstrates how to add other styles to hyperlinks.

Use of :focus
This example demonstrates how to use the :focus pseudo-class.
Pseudo-classes

	Pseudo name
	Description

	:active
	Adds a style to an element that is activated

	:first-child
	Adds a style to an element that is the first child of another element

	:focus
	Adds a style to an element that has keyboard input focus

	:hover
	Adds a style to an element when you mouse over it

	:lang
	Adds a style to an element with a specific lang attribute

	:link
	Adds a style to an unvisited link

	:visited
	Adds a style to a visited link

CSS Pseudo-elements

CSS pseudo-elements are used to add special effects to some selectors.

Syntax

The syntax of pseudo-elements:
selector:pseudo-element {property:value;}

CSS classes can also be used with pseudo-elements:
selector.class:pseudo-element {property:value;}

The :first-line Pseudo-element

The "first-line" pseudo-element is used to add a special style to the first line of a text.

In the following example the browser formats the first line of text in a p element according to the style in the "first-line" pseudo-element (where the browser breaks the line, depends on the size of the browser window):

Example

p:first-line
{
color:#ff0000;
font-variant:small-caps;
}

Note: The "first-line" pseudo-element can only be used with block-level elements.

Note: The following properties apply to the "first-line" pseudo-element:

· font properties

· color properties

· background properties

· word-spacing

· letter-spacing

· text-decoration

· vertical-align

· text-transform

· line-height

· clear

The :first-letter Pseudo-element

The "first-letter" pseudo-element is used to add a special style to the first letter of a text:

Example

p:first-letter
{
color:#ff0000;
font-size:xx-large;
}

Note: The "first-letter" pseudo-element can only be used with block-level elements.

Note: The following properties apply to the "first-letter" pseudo- element:

· font properties

· color properties

· background properties

· margin properties

· padding properties

· border properties

· text-decoration

· vertical-align (only if "float" is "none")

· text-transform

· line-height

· float

· clear

Pseudo-elements and CSS Classes

Pseudo-elements can be combined with CSS classes:

p.article:first-letter {color:#ff0000;}

<p class="article">A paragraph in an article</p>

The example above will display the first letter of all paragraphs with class="article", in red.

Multiple Pseudo-elements

Several pseudo-elements can also be combined.

In the following example, the first letter of a paragraph will be red, in an xx-large font size. The rest of the first line will be blue, and in small-caps. The rest of the paragraph will be the default font size and color:

Example

	p:first-letter
{
color:#ff0000;
font-size:xx-large;
}
p:first-line
{
color:#0000ff;
font-variant:small-caps;
}

CSS - The :before Pseudo-element

The ":before" pseudo-element can be used to insert some content before the content of an element.

The following example inserts an image before each <h1> element:

Example

h1:before
{
content:url(Untitled.gif);
}

CSS - The :after Pseudo-element

The ":after" pseudo-element can be used to insert some content after the content of an element.

The following example inserts an image after each <h1> element:

Example

h1:after
{
content:url(Untitled.gif);
}

Pseudo-elements

	Pseudo name
	Description

	:after
	Adds content after an element

	:before
	Adds content before an element

	:first-letter
	Adds a style to the first character of a text

	:first-line
	Adds a style to the first line of a text

CSS Navigation Bar

Having easy-to-use navigation is important for any web site. With CSS you can transform boring HTML menus into good-looking navigation bars.

Navigation Bar = List of Links

A navigation bar needs standard HTML as a base. In our examples we will build the navigation bar from a standard HTML list. A navigation bar is basically a list of links, so using the and elements makes perfect sense:

Example

Home
News
Contact
About

Now let's remove the bullets and the margins and padding from the list:

Example

ul
{
list-style-type:none;
margin:0;
padding:0;
}

list-style-type:none - Removes the bullets. A navigation bar does not need list markers

Setting margins and padding to 0 to remove browser default settings

The code in the example above is the standard code used in both vertical, and horizontal navigation bars.

Vertical Navigation Bar

To build a vertical navigation bar we only need to style the <a> elements, in addition to the code above:

Example

a
{
display:block;
width:60px;
}

display:block - Displaying the links as block elements makes the whole link area clickable (not just the text), and it allows us to specify the width

width:60px - Block elements take up the full width available by default. We want to specify a 60 px width

Note: Always specify the width for <a> elements in a vertical navigation bar. If you omit the width, IE6 can produce unexpected results.

Horizontal Navigation Bar

There are two ways to create a horizontal navigation bar. Using inline or floating list items.

Both methods work fine, but if you want the links to be the same size, you have to use the floating method.

Inline List Items

One way to build a horizontal navigation bar is to specify the elements as inline, in addition to the "standard" code above:
Example

li
{
display:inline;
}

display:inline; - By default, elements are block elements. Here, we remove the line breaks before and after each list item, to display them on one line

Floating List Items

In the example above the links have different widths.

For all the links to have an equal width, float the elements and specify a width for the <a> elements:

Example

li
{
float:left;
}
a
{
display:block;
width:60px;
}

Example explained:

float:left - use float to get block elements to slide next to each other

display:block - Displaying the links as block elements makes the whole link area clickable (not just the text), and it allows us to specify the width

width:60px - Since block elements take up the full width available, they cannot float next to each other. We specify the width of the links to 60px
CSS Image Opacity / Transparency

Creating transparent images with CSS is easy.

Note: This is not yet a CSS standard. However, it works in all modern browsers, and is a part of the W3C CSS 3 recommendation.

Example 1 - Creating a Transparent Image

First create a transparent image

<img src="Untitled.jpg" width="150" height="113" alt="Matrix"
style="opacity:0.4;filter:alpha(opacity=40)" />

Firefox uses the property opacity:x for transparency, while IE uses filter:alpha(opacity=x).

In Firefox (opacity:x) x can be a value from 0.0 - 1.0. A lower value makes the element more transparent.

In IE (filter:alpha(opacity=x)) x can be a value from 0 - 100. A lower value makes the element more transparent.

Example 2 - Image Transparency - Mouseover Effect

Mouse over the images:

	<img src="klematis.jpg" style="opacity:0.4;filter:alpha(opacity=40)"
onmouseover="this.style.opacity=1;this.filters.alpha.opacity=100"
onmouseout="this.style.opacity=0.4;this.filters.alpha.opacity=40" />

<img src="klematis2.jpg" style="opacity:0.4;filter:alpha(opacity=40)"
onmouseover="this.style.opacity=1;this.filters.alpha.opacity=100"
onmouseout="this.style.opacity=0.4;this.filters.alpha.opacity=40" />

We see that the first line of the source code is similar to the source code in Example 1. In addition, we have added an onmouseover attribute and an onmouseout attribute. The onmouseover attribute defines what will happen when the mouse pointer moves over the image. In this case we want the image to NOT be transparent when we move the mouse pointer over it.

The syntax for this in Firefox is: this.style.opacity=1 and the syntax in IE is: this.filters.alpha.opacity=100.

When the mouse pointer moves away from the image, we want the image to be transparent again. This is done in the onmouseout attribute.

Note:- this.style is a part of javascript css.

Example 3 - Text in Transparent Box

	<html>
<head>
<style type="text/css">
div.background
 {
 width:500px;
 height:250px;
 background:url(Untitled.jpg) repeat;
 border:2px solid black;
 }
div.transbox
 {
 width:400px;
 height:180px;
 margin:30px 50px;
 background-color:#ffffff;
 border:1px solid black;
 /* for IE */
 filter:alpha(opacity=60);
 /* CSS3 standard */
 opacity:0.6;
 }
div.transbox p
 {
 margin:30px 40px;
 font-weight:bold;
 color:#000000;
 }
</style>
</head>

<body>

<div class="background">
<div class="transbox">
<p>This is some text that is placed in the transparent box.
This is some text that is placed in the transparent box.
This is some text that is placed in the transparent box.
This is some text that is placed in the transparent box.
This is some text that is placed in the transparent box.
</p>
</div>
</div>

</body>
</html>

First, we create a div element (class="background") with a fixed height and width, a background image, and a border. Then we create a smaller div (class="transbox") inside the first div element. This div also have a fixed width, a background image, and a border. In addition we make this div transparent.

Inside the transparent div, we add some text inside a p element.

CSS Image Sprites
An image sprite is a collection of images put into a single image. A web page with many images can take a long time to load and generates multiple server requests. Using image sprites will reduce the number of server requests and save bandwidth.

Image Sprites Example

Instead of using three separate images, we use this single image ("Untitled.png"):
[image: image6.png]

Image:- Untitled.png

With CSS, we can show just the part of the image we need.

In the following example the CSS specifies which part of the "Untitled.png" image to show:

Example
img.home
{
width:46px;
height:44px;
background:url(abc.gif) 0 0;
}

Example explained:

 - Only defines a small transparent image because the src attribute cannot be empty. The displayed image will be the background image we specify in CSS

width:46px;height:44px; - Defines the portion of the image we want to use

background:url(img_navsprites.gif) 0 0; - Defines the background image and its position (left 0px, top 0px)

This is the easiest way to use image sprites, now we want to expand it by using links and hover effects.

Image Sprites - Create a Navigation List

We want to use the sprite image 'Untitled.png' to create a navigation list.

We will use an HTML list, because it can be a link and also supports a background image:

Example:-
	<html>

 <head>

 <title> One Image Many Targets </title>

<style type="text/css">

a

{

height:52px;

}

#home{

left:0px;

width:51px;

background:url('Untitled.png') 0 0;

}

#prev{

left:52px;

width:52px;

background:url('Untitled.png') -52px 0;

}

#next{

left:103px;

width:53px;

background:url('Untitled.png') no-repeat -104px 0;

}

</style>

</head>

<body>

 </body>

</html>

Example explained:

a{height:52px;} - the height of all the images are 52px

Now start to position and style for each specific part:

#home

left:0px;width:51px; - Positioned all the way to the left, and the width of the image is 51px

background:url('Untitled.png') 0 0; - Defines the background image and its position (left 0px, top 0px)

#prev

left:52px;width:52px; - Positioned 52px to the right (#home width 51px + some extra space between items), and the width is 52px.

background:url('Untitled.png') -52px 0; - Defines the background image 52px to the right (#home width 51px + 1px line divider)

#next

left:103px;width:53px;- Positioned 103px to the right (start of #prev is 52px + #prev width 52px + extra space), and the width is 53px.

background:url('Untitled.png') no-repeat -104px 0; - Defines the background image 104px to the right (#home width 52px + 1px line divider + #prev width 52px + 1px line divider)
Note:- The above example having image size 152x52 pixels. All the measurements depends on image size .
CSS Media Types

Media Types allow you to specify how documents will be presented in different media. The document can be displayed differently on the screen, on the paper, with an aural browser, etc.

Media Types

Some CSS properties are only designed for a certain media. For example the "voice-family" property is designed for aural user agents. Some other properties can be used for different media types. For example, the "font-size" property can be used for both screen and print media, but perhaps with different values. A document usually needs a larger font-size on a screen than on paper, and sans-serif fonts are easier to read on the screen, while serif fonts are easier to read on paper.

The @media Rule

The @media rule allows different style rules for different media in the same style sheet.

The style in the example below tells the browser to display a 14 pixels Verdana font on the screen. But if the page is printed, it will be in a 10 pixels Times font. Notice that the font-weight is set to bold, both on screen and on paper:

	<html>
<head>
<style>
@media screen
 {
 p.test {font-family:verdana,sans-serif;font-size:14px;}
 }
@media print
 {
 p.test {font-family:times,serif;font-size:10px;}
 }
@media screen,print
 {
 p.test {font-weight:bold;}
 }
</style>
</head>

<body>
<p class="test">This will have dual behavior while displaying in a browser and
printing on paper</body>
</html>

See it yourself ! If you are using Mozilla/Firefox or IE 5+ and print this page, you will see that the paragraph under "Media Types" will be displayed in another font, and have a smaller font size than the rest of the text.

Different Media Types

Note: The media type names are not case-sensitive.

	Media Type
	Description

	all
	Used for all media type devices

	aural
	Used for speech and sound synthesizers

	braille
	Used for braille tactile feedback devices

	embossed
	Used for paged braille printers

	handheld
	Used for small or handheld devices

	print
	Used for printers

	projection
	Used for projected presentations, like slides

	screen
	Used for computer screens

	tty
	Used for media using a fixed-pitch character grid, like teletypes and terminals

	tv
	Used for television-type devices

CSS Attribute Selectors

Style HTML Elements With Specific Attributes

It is possible to style HTML elements that have specific attributes, not just class and id.

Note: Internet Explorer 7 (and higher) supports attribute selectors only if a !DOCTYPE is specified. Attribute selection is NOT supported in IE6 and lower.

Attribute Selector

The example below styles all elements with a title attribute:

Example:-
[title]
{
color:blue;
}

Attribute and Value Selector

The example below styles all elements with title="W3Schools":

Example
[title=W3Schools]
{
border:5px solid green;
}

Attribute and Value Selector - Multiple Values

The example below styles all elements with a title attribute that contains a specified value. This works even if the attribute has space separated values:

Example

[title~=hello] { color:blue; }
The example below styles all elements with a lang attribute that contains a specified value. This works even if the attribute has hyphen (-) separated values:

Example

[lang|=en] { color:blue; }

Styling Forms

The attribute selectors are particularly useful for styling forms without class or ID:

Example

	input[type="text"]
{
width:150px;
display:block;
margin-bottom:10px;
background-color:yellow;
}
input[type="button"]
{
width:120px;
margin-left:35px;
display:block;
}

CSS Aural Reference

Aural style sheets use a combination of speech synthesis and sound effects to make the user listen to information, instead of reading information.

Aural presentation can be used:

· by blind people

· to help users learning to read

· to help users who have reading problems

· for home entertainment

· in the car

· by print-impaired communities

The aural presentation converts the document to plain text and feed this to a screen reader (a program that reads all the characters on the screen).

An example of an Aural style sheet:
h1,h2,h3,h4
{
voice-family:male;
richness:80;
cue-before:url("beep.au")
}

The example above will make the speech synthesizer play a sound, then speak the headers in a very rich male voice.

CSS Aural Reference

	Property
	Description
	Values

	azimuth
	Sets where the sound should come from
	angle
left-side
far-left
left
center-left
center
center-right
right
far-right
right-side
behind
leftwards
rightwards

	cue
	Sets the cue properties in one declaration
	cue-before
cue-after

	cue-after
	Specifies a sound to be played after speaking an element's content
	none
url

	cue-before
	Specifies a sound to be played before speaking an element's content
	none
url

	elevation
	Sets where the sound should come from
	angle
below
level
above
higher
lower

	pause
	Sets the pause properties in one declaration
	pause-before
pause-after

	pause-after
	Specifies a pause after speaking an element's content
	time
%

	pause-before
	Specifies a pause before speaking an element's content
	time
%

	pitch
	Specifies the speaking voice
	frequency
x-low
low
medium
high
x-high

	pitch-range
	Specifies the variation in the speaking voice. (Monotone voice or animated voice?)
	number

	play-during
	Specifies a sound to be played while speaking an element's content
	auto
none
url
mix
repeat

	richness
	Specifies the richness of the speaking voice. (Rich voice or thin voice?)
	number

	speak
	Specifies whether content will render aurally
	normal
none
spell-out

	speak-header
	Specifies how to handle table headers. Should the headers be spoken before every cell, or only before a cell with a different header than the previous cell
	always
once

	speak-numeral
	Specifies how to speak numbers
	digits
continuous

	speak-punctuation
	Specifies how to speak punctuation characters
	none
code

	speech-rate
	Specifies the speed of the speaking
	number
x-slow
slow
medium
fast
x-fast
faster
slower

	stress
	Specifies the "stress" in the speaking voice
	number

	voice-family
	Specifies the voice family of the speaking
	specific-voice
generic-voice

	volume
	Specifies the volume of the speaking
	number
%
silent
x-soft
soft
medium
loud
x-loud

